Knowledge Acquisition for Temporal Abstraction

Adam Stein, Mark A. Musen, M.D., Ph.D., Yuval Shahar, M.D., Ph.D.
Section on Medical Informatics, Stanford University School of Medicine,
Stanford, CA 94305-5479

Temporal abstraction is the task of detecting relevant
patterns in data over time. The knowledge-based
temporal-abstraction method uses knowledge about a
clinical domain’s contexts, external events, and
parameters to create meaningful interval-based
abstractions from raw time-stamped clinical data. In
this paper, we describe the acquisition and
maintenance of domain-specific temporal-abstraction
knowledge. Using the PROTEGE-II framework, we have
designed a graphical tool for acquiring temporal
knowledge directly from expert physicians, maintaining
the knowledge in a sharable form, and converting the
knowledge into a suitable format for use by an
appropriate problem-solving method. In initial tests,
the tool offered significant gains in our ability to
rapidly acquire temporal knowledge and to use that
knowledge to perform automated temporal reasoning.

ACQUISITION OF TEMPORAL KNOWLEDGE

The temporal-abstraction task, which, in a clinical
setting, consists of creating interval-based abstractions
from time-stamped interventions and clinical
parameters (Figure 1), is highly relevant to any domain
in which patient data are tracked over time. The
temporal-abstraction task can be solved independently
of the particular clinical domain by a method called
knowledge-based temporal abstraction (KBTA).1
The KBTA method uses an extensive domain model, or
ontology,2 to represent formally the terms, concepts,
and relations relevant to the temporal-abstraction task.
This explicit declaration of knowledge requirements
offers several potential benefits, such as increased reuse
of the KBTA method across multiple clinical domains,
easier acquisition and maintenance of domain-specific
knowledge bases, and increased sharing of those
knowledge bases with other tasks in the same domains.
However, acquisition and maintenance of the domain-
specific knowledge necessary for the operation of the
KBTA method remain significant difficulties. In
particular, we must address two problems: (1) we must
design a KA tool that allows expert physicians to enter,
browse, and update the clinical knowledge in the
system directly and easily; and (2) we must convert, or
map, the acquired knowledge into a form readable by
the method implementation.

Mapping knowledge bases to problem-solving methods
is an important step in facilitating reuse.” Often,
method implementations are legacy software that
cannot or should not be modified to accommodate each
new change in a knowledge base. Moreover, a single
method implementation is ideally applicable to
knowledge bases from different domains, in which case
mapping is essential. Note that RESUME, our

0195—4210/96/$5.00 © 1996 AMIA, Inc.

204

implementation of the KBTA method, is independent of
both domain (e.g., oncology) and application (e.g.,
guideline-based therapy). The KA tool generated for a
particular application, however, is typically tailored to
that application. Thus, our intent is to leave intact the
implementations of domain-independent methods such
as RESUME, while tailoring KA tools to certain users
and applications. We must then resolve the differences
between a method’s ontology and a KA tool’s ontology.

We have addressed the problem of knowledge
acquisition and maintenance by generating a KA tool
within the PROTEGE-II* development environment. In
addition, we have designed a flexible and reusable filter
that performs the necessary mapping between the KA
tool’s output and RESUME’s internal knowledge
structures. The tool enables us to acquire temporal-
abstraction knowledge rapidly and to apply RESUME to
a variety of tasks and clinical domains.

KNOWLEDGE-BASED TEMPORAL ABSTRACTION

To provide a background for understanding the
challenges and requirements of designing a KA tool for
temporal abstraction, we shall describe briefly the
relevant aspects of the KBTA method. The KBTA
method decomposes the temporal-abstraction task into
five parallel subtasks (Figure 2): 1) Temporal-context
restriction is the creation of relevant contexts (e.g.,
effect of a drug) for interpretation of data, crucial for
limiting the scope of the inference; 2) Vertical
temporal inference is inference from values of
contemporaneous input data or abstractions into values
of higher-level concepts (e.g., classification of the
results of several blood tests conducted during the same
day into bone-marrow toxicity Grade II); 3)
Horizontal temporal inference is inference from
similar-type propositions that hold over different time
intervals (e.g., joining different-value abstractions of
the same clinical parameter that hold over two meeting
time intervals, and computing the value of the new
abstraction); 4) Temporal interpolation is the bridging
of gaps between similar-type but temporally disjoint
point- or interval-based propositions to create longer
intervals (e.g., joining two disjoint episodes of anemia,
occurring on different days, into a longer episode); 5)
Temporal-pattern matching is the creation of
intervals by matching of patterns over disjoint intervals,
over which hold various propositions (e.g., onset of
quiescent-onset chronic graft-versus-host disease).

The RESUME software system forms temporal
abstractions given time-stamped patient data and a
domain-specific knowledge base.5 RESUME has been
evaluated with encouraging results in a variety of

MI0) MIIMI2M[3] M(2) M0}

A pA A A
Plateet o, e e Aé.AAAAAAA AAD Granu-
L . A 4 o 4 m
() tet e
150K 2000
100K 1000
>
0 50 100 200 400

Time (days)
Figure 1: Typical inputs to and outputs of the temporal-
abstraction task. The figure presents examples of
abstractions of platelet and granulocyte values during
administration of the PAZ clinical protocol for treating
patients who have chronic graft-versus-host disease
(CGVHD). The time line starts with a bone-marrow-

transplantation (BMT) event. iy I event; ¢ =
platelet counts; A = granulocyte counts; = open

context interval; F = closed abstraction interval;
M[n] = myelotoxicity (bone-marrow—toxicity) grade n.

clinical domains, such as protocol-based care,
monitoring of children’s growth,® and management of
insulin-dependent diabetes.”

DOMAIN-SPECIFIC KNOWLEDGE

The domain-specific knowledge required by the
temporal-abstraction mechanisms is represented as a
parameter-properties ontology: a representation of
the raw and abstract parameters (e.g., blood glucose
level) in that domain, their temporal properties (e.g.,
persistence over time), and the relations among them.3
The parameter-properties ontology is used by all the
temporal-abstraction mechanisms. The context-forming
mechanism also refers to an ontology of external events
and an ontology of interpretation contexts. An event is
any external occurrence or intervention (e.g., insulin
administration) that affects a clinically relevant
parameter. Interpretation contexts are induced by
events or parameter abstractions, and alter the
interpretation of concurrent parameter values (e.g., the
context of chemotherapy modifies the interpretation of
hematological values). To be useful for a particular
clinical domain, the temporal-abstraction mechanisms
must take as input domain-specific knowledge. This
domain-specific knowledge is the only interface
between the KBTA method and the system developer.
Thus, constructing a temporal-abstraction system
particular to a new domain requires only creating or
editing a predefined set of knowledge categories.

We distinguish among four knowledge types (Figure 2)
used by the temporal abstraction mechanisms:

1. Structural knowledge consists of the IS-A and
PART-OF relations that link concepts in a domain. For
example, the parameter WHITE_BLOOD_CELL_COUNT

has an IS-A relation to the more general class
HEMATOLOGICAL_PARAMETER.

2. Classification knowledge allows parameters to be
assigned values, such as the classification of blood
glucose levels into HYPOGLYCEMIC, LOW, NORMAL,
HIGH.

3. Temporal-semantic knowledge allows inferences to
made about temporal intervals. For example, two
abstraction intervals that share the concatenable
property can be joined into a single superinterval.

4. Temporal-dynamic knowledge includes properties
such as the persistence of the value of a parameter over
time.

THE KNOWLEDGE-ACQUISITION TOOL

In previous trials of RESUME, a knowledge engineer
captured the necessary domain-specific knowledge in a
series of interviews with a domain expert, and then
coded it with a text editor in a form readable by the
system. Knowledge acquisition typically necessitated
four to six 2-hour interviews, followed by 1 to 2 weeks
of encoding. Subsequent modifications to the
knowledge base had to be performed with a text editor
by a person familiar with the RESUME knowledge
structures.

We took advantage of the PROTEGE-II framework in
designing the KA tool. PROTEGE-II, a development
environment for knowledge-based expert systems,
supports libraries of reusable problem-solving
methods.”>9 RESUME is one such method. PROTEGE-
1I provides tools for constructing formal ontologies of
task-specific knowledge, for generating and tailoring
graphical KA tools from these ontologies, and for using
the resulting KA tool to acquire and maintain domain-
specific knowledge.

Knowledge acquisition is largely a problem of
modeling. Thus, the first step in using PROTEGE-II to
construct a KA tool was developing a KA ontology

(Figure 3): an explicit conceptualization of the
[_ e knowledge-based

Temporal Verﬂe:l.l Horizontal ';l‘emporal- Temporal
restriction ?.‘.'f“&m interence | [ation. || Bamtehing

*\ ~£ .}/ TIN T

~
empo empo!

(St"“““mj i semantic I dynamic

knowledge knowledge knowledge knowledge

Figure 2: The knowledge-based temporal-abstraction

method. = task; O = method; D =

knowledge type; =% = DECOMPOSED-INTO
relation; — —# = USED-BY relation.

205

knowledge to be acquired from a domain expert. This
formal declaration of knowledge roles is necessary to
provide a structure to the user interface of the eventual
KA tool, and also to make clear the necessary mappings
between the output of the tool and requirements of
RESUME. Typically, a developer begins designing a
knowledge-based system with PROTEGE-II by
constructing a method-independent, domain-specific
ontology, then selecting a problem-solving method best
suited to the task at hand.# She then expands or
modifies the domain ontology to encompass the
knowledge requirements of the selected method.
However, because RESUME has a large set of
knowledge requirements, and because the knowledge
specific to the temporal-abstraction task is not normally
included in a method-independent domain ontology, we
chose instead to use RESUME’s input—output
requirements as a starting point for the KA tool. The
resulting method-specific KA ontology, modeled on
RESUME’s internal, hard-coded ontology, can be
tailored for any medical domain.

We constructed the KA ontology using the PROTEGE-1I
graphical editor for creating, browsing, and editing
class hierarchies. This formal specification of the items
and relations to be acquired was designed to match as
closely as possible RESUME’s knowledge structures.
However, the KA ontology has the constraint that,
because it provides the basis of a KA tool, its surface
structure has to be easily comprehensible by an expert
clinician who is not acquainted with the details of
RESUME, and it must guide the user of the resulting
tool through a clear and consistent dialogue.
Furthermore, some of the complex knowledge
structures assumed by RESUME cannot be acquired
directly because of constraints imposed by the
PROTEGE-II tools. For example, RESUME internally
makes use of three-dimensional tables that are difficult
to represent graphically. Thus, development of the KA
ontology for RESUME necessitated many important

KA ontology

design decisions. Because the KA tool is an
intermediary layer between a domain expert and an
expert system, it must meet the needs of both the user
and the computational method. We had to model
complicated relationships as simply as possible, and
break complex knowledge structures into smaller, more
readily acquired pieces, to create a suitable user
interface. Likewise, we had to represent the full range
of RESUME’s knowledge requirements in the KA
ontology to fulfill the goal of instantiating RESUME in
multiple clinical domains.” We continue to refine the
KA ontology both to model RESUME’s knowledge
structures more accurately, and to take advantage of
updated features of PROTEGE-IL

Mappings

The KA tools generated by PROTEGE-II acquire and
store knowledge as collections of user-defined instances
of the classes specified in the KA ontology. If a
problem-solving method is to be able to use the
resulting knowledge base, the terms and relations in the
method must be mapped to the corresponding terms and
relations in the KA ontology,3 and any necessary
translation must be performed.

Because of the design issues discussed earlier, the
temporal-abstraction KA ontology differs from
RESUME’s knowledge structures in small but important
ways (Figure 3). The class structure is arranged to
present a more simple and uniform view to the user of
the KA tool. Large knowledge structures are broken
into several pieces to enhance the user interface. To
perform the necessary mappings, we constructed a filter
that preprocesses the output of the KA tool into a form
readable by RESUME. The ontologies of both RESUME
and the KA tool might change in the future, so we
designed the filter to be reusable and easily modified.

The filter itself consists of a general algorithm onto
which are attached small modular pieces of code that
perform the actual transformation. The filter reads in

RESUME ontology

C Event)/ Parameter

Rate
[
] W LIS
' 4 "

i L/ TR T
Abstracted- | | Parameter | [Maximal- Mapping
from values gap tables
relations functions

C Rate D (C State)

Figure 3: Part of the ontologies of the KA tool and RESUME, and some of the mappings between them. O-=

class;

= property; - _i5A relation; """ = PROPERTY-OF relation; ==

= MAPPED-TO relation.

The KA tool captures domain-specific knowledge by creating instances of the classes in the KA ontology. For
example, in the diabetes domain, GLUCOSE_STATE is an instance of a state parameter and has an ABSTRACTED-
FROM relation to the primitive parameter GLUCOSE. The tool then maps this knowledge to the knowledge
structures in RESUME for use in temporal abstraction. For clarity, only a few of the mappings are shown.

206

. | glucose_state o

Figuré 4: Graphical forms from the KA tool. (a) An example of a state parameter. As shown, GLUCOSE_STATE

breakfast

Induced contexts

has an ABSTRACTED-FROM relation to GLUCOSE. The mapping table contains the classification knowledge needed
to abstract the correct value of the state parameter (e.g., a GLUCOSE value of 55 to 80 results in a GLUCOSE_STATE
abstraction with value LOW). (b) A form for acquiring events. The user can enter new instances in the list browsers,
or review previously entered knowledge. For example, if the user selects the induced context PRE_BREAKFAST and
clicks on the edit button , then (c) the corresponding form appears. The user is then free to edit that form.

the knowledge acquired with the KA tool, and then
iteratively calls the pieces of code. Each of these small
modular programs represents an individual mapping
from a class in RESUME’s ontology to an instance or set
of instances acquired by the KA tool. The result is an
output file of knowledge structures compatible with the
RESUME ontology.

Any change in the RESUME or KA ontologies will
necessitate a change in only the corresponding mapping
code, rather than in the filter itself. we have
deliberately kept the mappings as straightforward as
possible. Sometimes, no transformation is required, or,
in the simplest case, an integer might be converted to a
floating-point number. Other structures, however,
require more processing. For example, as mentioned
earlier, RESUME internally makes use of three-
dimensional tables that the KA tool must represent
graphically with vectors and two-dimensional tables. A
more complex function is needed to translate between
the two representations. The advantages of using
lightweight, independent pieces of code are that the
source of an error can be quickly located and fixed;

207

individual mappings can be easily removed, augmented,
or replaced; and the filter can rapidly adjust to changes
in either of the two ontologies. Moreover, the filter’s
algorithm is completely independent of any given
domain or method, and therefore is suitable for
mapping between any two ontologies.

RESULTS

Given the KA ontology, PROTEGE-II automatically
generates a graphical KA tool4 (Figure 4). Initially,
PROTEGE-II creates a generic layout, which the
knowledge engineer can tailor by repositioning the
elements and editing the text labels. Standard graphical
metaphors — such as radio buttons, text fields, pop-up
menus, and list browsers — allow the user to create, to
browse, and to edit a knowledge base.

The KA tool includes forms for acquiring primitive,
state, gradient, rate, and pattern parameters, as well as
contexts and events. Each form corresponds to an
instance of a class in the method ontology, and the input
data correspond to slot values. These forms pop up
automatically when the user indicates that she wants to

enter a new instance. In addition, the user is able to add
new slots to the generic classes in the method ontology.
For example, if the physician creates an instance of the
class EVENT called MEDICATION, she may want to add
an attribute DOSE that takes an integer as a value.

We have used the KA tool to re-enter a portion of the
diabetes domain knowledge that we acquired previously
through interviews with experts. In initial trials, re-
entry by a developer took only a few hours — a large
improvement over the time spent originally encoding
the knowledge with a text editor. RESUME was able to
read correctly the resulting domain-specific temporal-
abstraction knowledge base, and derived temporal
abstractions identical to those that it derived with the
hand-coded knowledge when given the same time-
stamped patient data.” Future evaluation will test the
use of the tool by domain experts.

DISCUSSION

Using the declarative, knowledge-based framework of
PROTEGE-II, we have constructed a reusable tool for
acquiring temporal-abstraction knowledge in multiple
clinical domains, and have demonstrated its use in the
domain of diabetes. The knowledge-acquisition task is
a significant stumbling block in the rapid construction
of clinical decision-support systems. Automated tools
such as the one we have built offer the hope of
shortening development time and increasing software
reuse. Moreover, they transfer the ability to acquire and
update domain knowledge from developers to the
expert physicians who actually use the systems. These
features give problem-solving methods the flexibility to
be applied quickly to a wide variety of medical
domains, and to evolve as domain knowledge changes.

The ease of use of a knowledge-based software
component depends critically on the effective design of
that component’s ontology. In general, it is not enough
that the knowledge structures be declarative. They
should also be clear, intuitively structured, and broken
into manageable pieces for knowledge acquisition. In
addition to providing a knowledge framework for an
underlying piece of software, an ontology acts as an
interface — with system developers, with domain
experts, and with other programs. Thus, the optimal
design for an ontology is not necessarily the one that is
most compact or efficient for a single given use. For
example, in the case of PROTEGE-I], it is important that
the KA ontology be as similar as possible to the
problem-solving method’s ontology, even if the KA
tool is domain specific, to ensure that mappings will be
simple and robust.

Because the KA tool interface is constrained by the
windowing and development environments, knowledge
engineers should design the problem-solving method
with knowledge acquisition in mind. They should
minimize implicit semantic constraints (i.e.,
dependencies) between items in the method ontology,
and keep structures as simple as possible.

In the current filter, each mapping requires an
additional small piece of code. However, the problem
of mapping between knowledge bases is a general one;
as we gain experience using the filter, we plan to look
for patterns in the most common types of mappings. In
the future, a more sophisticated filter might be
instructed to perform certain mappings automatically.

A crucial step in the development of the system will be
to test that system with domain experts. We are
planning a series of studies with several expert
physicians that will measure the KA tool’s
expressiveness and ease of use, as well as the validity of
the resulting knowledge bases. Such tests will reveal
the advantages of the KA tool, and will highlight areas
that require further refinement.

Acknowledgments

This work has been supported in part by grants
LMO05305, LM05708, and LM06245 from the National
Library of Medicine. Dr. Musen is a recipient of NSF
Young Investigator Award IRI-9257578.

References

1. Shahar Y. A knowledge-based method for temporal
abstraction of clinical data. Ph.D. dissertation; Medical
Information Sciences, Stanford University, CA. 1994

2. Guarino N, Giaretta P. Ontologies and knowledge
bases: Towards a terminological clarification. Towards
Very Large Knowledge Bases, N. J. 1. Mars (ed.), IOS
Press, 1995.

3. Gennari JH, Tu SW, Rothenfluh TE, Musen MA.
Mapping domains to methods in support of reuse.
International Journal of Human-Computer Studies,
1994; 41:399-424.

4. Musen MA, Gennari JH, Eriksson H, Tu SW, Puerta
AR. PROTEGE-II: Computer support for development
of intelligent systems from libraries of components.
Proceedings of MEDINFO 95, The Eighth World
Congress on Medical Informatics, 1995; 766-70.

5. Shahar Y, Musen MA. RESUME: A temporal-
abstraction system for patient monitoring. Computers
and Biomedical Research, 1993; 26:255-73.

6. Kuilboer MM, Shahar Y, Wilson DM, Musen MA.
Knowledge reuse: Temporal-abstraction mechanisms
for the assessment of children’s growth. Proceedings,
Seventeenth Annual Symposium on Computer
Applications in Medical Care, 1993; 449-53.

7. Shahar Y, Musen MA. Knowledge-based temporal
abstraction in clinical domains. Artificial Intelligence in
Medicine, 1996; 8:267-98.

8. Shahar Y, Tu SW, Musen MA. Knowledge
acquisition for temporal-abstraction mechanisms.
Knowledge Acquisition, 1992; 4:217-36.

9. Tu SW, Eriksson H, Gennari JH, Shahar Y, Musen
MA. Ontology-based configuration of problem-solving
methods and generation of knowledge-acquisition tools:
Application of PROTEGE-II to protocol-based decision
support. Artificial Intelligence in Medicine, 1995;
7:257-89.

208

